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Abstmd. We repon Monte Carlo simulations of annihilation reactions A+A+O in a 
one-dimensional lattice for hard-core panicles. In the model, the panicles perform a random 
walk and can react (occupy the same site and annihilate) with a probability of reaction 
p s  1. When p~ 1, the density of A particles decays at intermediate times approximately 
as p( t ) -  IC’, after an initial plateau at ShoR times. The exponent y is non-universal and 
depends only on p. f < y < 1. Both the diffusion-controlled and the reaction-controlled 
reactions limits are recovered when p =  1 and p-0 ,  respectively. These results should be 
relevant for annihilation reactions taking place on effectively law-dimensional substrates 
of spectral dimension d,<Z such as rough surfaces, porous media and ramified Stmdures. 

Diffusion-controlled reactions have attracted much attention in recent years [I-61. 
Their understanding constitutes a basic problem in science with applications in a variety 
of physical and chemical processes [7]. 

In models describing diffusion-controlled reactions the reacting particles are 
allowed to perform jumps at random between nearest-neighbour sites of a lattice. 
When a particle jumps to a site occupied by another particle, they annihilate with each 
other and are removed from the system. In this case, the reaction rate is entirely 
determined by the diffusion process [Z]. In many physical and chemical processes, 
however, the reaction does not take place when two particles collide for the first time, 
but several collisions can occur before they react. This can be modelled by assigning 
a probability of reaction p < 1 that two particles -mihilate when they attempt to occupy 
the same site. Physically, such a probability of reaction may be the result of an effective 
energy barrier that the particles must overcome in order to get close enough to react. 
After a collision has taken place, the particles may be either reflected back to their 
previous positions, or react and escape out of the system (annihilation) as, for instance, 
in a catalytic reaction. 

So far, most of the interest in the A+A+O reaction has been focused on the 
asymptotic behaviour of the particle density p ( l )  [l-51, for interpenetrating particles 
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where the excluded volume interaction is absent. In the case of diffusion-controlled 
reactions ( p  = l) ,  it is well known that for long times (see e.g. [3]) 

p(  1 )  - t - ' / 2  (1) 

in one dimension, while p ( t ) -  f-' in systems of dimension d a 2 .  These limiting 
behaviours correspond in general to the low-density regime. The situation can change 
considerably when the reaction probability becomes small, p<< 1, in particular in 
one-dimensional systems. The corresponding effects on p ( t )  are expected to be impor- 
tant in effectively low dimensional disordered systems with spectral dimension d,  < 2 
such as fractals and ramified structures possessing a high degree of geometrical 
constraints, and also heterogeneous surfaces where surface diffusion of adsorbed 
molecules can be described by percolation concepts [8]. In these systems, p ( f )  - t d 2  
[9,10] where d s = 2 d J d , ,  d f  is the fractal dimension and d , > 2  is the anomalous 
diffusion exponent characterizing the time behaviour of the mean-square displacement 
of the random walk. These disordered systems play a role in industrial surface-catalysis, 
electrode and membrane reactions, excitation trapping in molecular aggregates and 
composite materials [7,11]. 

In order to understand the essential features of the annihilation reaction for 
hard-core particles in these low dimensional systems when the probability of reaction 
p is small we consider the simplest case of a one-dimensional lattice. In one dimension, 
departures from the asymptotic law (1) may be expected at intermediate times. This 
corresponds to the high-density regime, which in experimental set-ups is more interest- 
ing than the low density one. When the reaction probability p is sufficiently small, the 
transient regime may be long enough to become relevant in the experiments. In addition, 
the interesting phenomenon of anomalous diffusion characteristic of hard-core particles 
( d , = 4  [3]) may be observed at  short times (before the particles can react) when p 1 
and the initial density is sufficiently large. 

Let us consider first the case that p is smaller but close to one, p <  1. In this case 
the repulsive bamer between two particles can be overcome after few collisions, the 
hard-core effect will be negligible at long times and the density will obey ( 1 )  asymptoti- 
cally. If p is decreased, the crossover to  ( 1 )  will be reached at later times. We may 
denote as f, the crossover time to the regime (1 ) .  If p is decreased further, the time 1,  
may eventually occur at  times well beyond the experimentally accessible time. For this 
model, we thus expect that the asymptotic behaviour of p ( f )  will not depend on p 
[ 2 , 5 ] ,  i.e. p ( f ) -  t- ' /* when f + m, equation ( l ) ,  as for interpenetrating particles. In 
this work we are interested in the intermediate regime, i.e. for times 1": 1 , .  when p<< 1. 
In this intermediate regime, the precise behaviour of p ( t )  has not, to our knowledge, 
been studied so far. 

Let us start with the description of the model. At I = 0, each site of a one-dimensional 
lattice is occupied by identical particles with probability po. which is the initial particle 
density. The particles perform a random walk between nearest-neighbour sites of the 
lattice and periodic boundary conditions are employed. Because of annihilation 
the total number of particles N ( f )  decreases with time f. In the simulations, one 
of the N ( t )  particles is picked up at random at time f and attempts to  jump to 
any of the two nearest-neighbour sites with equal probability (f in this case). Three 
possibilities can occur: (i) if the chosen site is empty the particle jumps. (ii) If the 
chosen site is occupied, the reaction takes place with probability p. If successful, both 
particles are removed from the lattice and the number of particles N is reduced to 
N -2. Otherwise, (iii) the jump is not performed and the particle remains at its position. 



Letter to the Editor U57 

This process is repeated until the number of selected particles (i.e. the number of 
jumping attempts) reaches the actual number of particles present in the system. Then 
the time f is increased by one unit and the process is repeated for many unit time steps. 

Let us discuss our results. In figure 1, values of the density p ( t )  obtained when 
p = O . O l .  for different values of po, are shown as a function off. After an initial regime 
at short times where the density remains almost constant, an approximate power-law 
behaviour is observed at intermediate times 

p ( t ) - t P  (2) 
where y = 0.86, independently of po indicating some degree of universality. To see how 
sensitive our result (2) is, we considered also ordered starting configurations, e.g.: ( a )  
N equidistant particles disposed every I = p;' lattice sites such that NI = L ( L  being 
the lattice length), and ( b )  N particles occupying the first N consecutive lattice sites. 
In both cases we obtained the same value of y. 
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Figure 1. Density p versus time I for annihilation reactions in one dimension and reaction 
probability p = 0.01. The different symbols correspond to different initial densities po = 0.2 
(crosses), 0.4 (squares) and 0.8 (filled triangles). The straight line is drawn as a guide and 
has slope -0.86. Averages over 20 to 100 initial configurations for each value of po were 
performed on systems of L = IO 000 sites. 

The power-law dependence (2) is just one possible representation of the numerical 
data and is adopted here because of its simplicity. It may be viewed as a quantitative 
interpolation scheme between the plateau at short times and the asymptotic power-law 
(1). A full theoretical description of the exact time-dependence of p is still lacking. 
In any case, it is interesting to observe that (2) occurs on about two decades in the 
time scale. The fact that y # $ and y # 1 is an indication that a non-trivial interplay 
between interaction and geometry determines the intermediate time behaviour of the 
density. It should be emphasized that non-universal power laws constitute also a useful 
representation of experimental data in more complex interacting systems, such as those 
describing for instance the intermediate frequency regime of the ionic conductivity in 
many disordered ionic conductors [ i l l .  

The asymptotic regime (1) was not reached within our available computer time. 
For other values of p, similar qualitative behaviour was found. However, the corres- 
ponding values of y were different but depending only on p ;  the smaller the value of 
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p the larger is y (see table 1). These results suggest that y +  1 when p + O ,  which 
corresponds to the case of reaction-controlled reactions where diffusion effects are 
neglected and the mean field approximation -dp/dt-p* holds, p ( t ) -  f-'. 

It is apparent from figure 1 that the crossover time to between the plateau at short 
times and the power-law (2) depends on po for initially disordered configurations. In 
order to determine the crossover time to for fixed p within our approximate scheme, 
we make the following scaling ansatz for the density 

(3) 
which should hold for times t<< 1, .  In our case, the scaling function f(x) is expected 
to  behave asf(x)-constant for x<< 1 andf(x)-x-'  for x > > l  ( t e  t J .  Using (2) ,  we 
find according to (3) that p( f ) -pn( f / to ) - '  when 12 to. Using the fact that p ( t )  is 
independent of po when t > to ,  we obtain 

P (  t )  = P o f (  t /  to) 

to-p; 'Jy.  (4) 

To see how well these predictions actually work, we have plotted in figure 2 values of 
p / p o  as a function of fpAir, for different values of po and fixed p using the values of 
y displayed in table 1. The data collapse observed in figure 2 supports our ansatz (3) 
and the scaling result (4), thus indicating aposterion the plausibility of our choice (2). 
It should be noted that for initially ordered particle configurations in which the N 
starting particles occupy N consecutive lattice sites (case ( b )  discussed above), our 
numerical simulations suggest that the density obeys the scaling form p ( t )  = pog(t / to)  

Table I. Exponents y far different values of p.  The error bars are of  aboulO.02 for p s 0.03 
and 0.04 for p = 0.1. 

~~ ~ 

P 0.1 0.03 0.01 0.003 0 001 
Y 0.75 0.82 0.86 0.92 0.95 
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Figure 2. Density p l p o  versus time ip i fv  for different reaction probabilities (from top to 
bottom) p=IO-' (y=O.95 ) ,  10.' (y=O.86 )  and IO-' (y=0.75) .  n e  different symbols 
correspond to different values of p , = 0 . 2  (circles), 0.4 (squares) and 0.8 (triangles). The 
data collapse strongly suppons the scaling ansatl (3). The straight lines have slopes - y  
and are drawn as a guide. 
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with to independent of po but depending only on p, and g(x) = constant for x<< 1 and 
g(x) e x - ’  for x >> 1. The independence of to on po for these particular configurations 
can be expected since these configurations differ only in their initial number of particles 
N but not in their relative particle distances. 

Note that the time interval in which the power-law (2) holds increases when p 
decreases (figure 2). For larger times, the reaction will be controlled by diffusion and 
the regime (1) will be reached when t >> f , .  As a result, a breakdown of the scaling 
behaviour (3) can be expected at larger times. This is indeed observed in figure 2 in 
the case p = 0.1. The regime (1) was found for larger values of p. The precise dependence 
of t ,  on p and po remains to be studied. 

When p-1,  the intermediate time regime vanishes, i.e. t ,  + t o  and y + $ .  Thus to 
becomes the only characteristic time. In this limit, (4) yields the known result fa= p i 2  
[2-51. In general, both times to and f ,  need to be taken into account for a complete 
description of the full time-dependence of p. Our ansatz (3) describes the scaling 
behaviour of p ( f )  in the neighbourhood of to only. It is interesting that such scaling 
behaviour actually works in the intermediate time regime. 

In summary, we have studied the annihilation reaction A + A +  0 in one dimension 
for hard-core particles. The A particles diffuse in the system and when two particles 
collide both disappear (annihilate) with probability p, otherwise they are reflected back 
to their previous positions. For p = 1 ,  the reaction is controlled by diffusion and the 
density p ( f )  of the particles decay, after an initial plateau at short times, as p ( f ) -  I-’ 
with y = i .  When p<< 1, an intermediate time regime develops which is characterized 
by an approximate power-law with a non-universal exponent f <  y < 1 (see figure 1 
and table 1) .  The exponent y depends only on p and is independent of both po and 
the initial distribution of particles. In addition, the density p ( t )  obeys a scaling relation 
(3) (for initially disordered particle configurations) from which we obtain the charac- 
teristic time to-p;”7 determining the set-in of the intermediate time regime. When 
p +  0, y +  1 and we recover the limit of reaction-controlled reactions governed by the 
known mean-field equation -dp/df - p2,  p(  1 )  - t - ’ ,  i.e. y = 1. In all cases p > 0, we 
expect that p(  t )  - t - ’ / 2  asymptotically. For fractal substrates, similar effects can be 
expected for sufficiently small p such that y becomes larger than ds/2< 1 .  Similar 
numerical studies of annihilation processes in these disordered systems are in progress. 
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